高考复读老师讲解高二数学圆锥曲线学习窍门
下面为大家整理了高二数学圆锥曲线学习窍门,来跟随思源教育高考复读老师一起看看吧。科学复习,走好考前的最后一公里。
高考复读
一、舍得花时间,得提高计算能力
圆锥曲线的计算量非常大,一个圆锥曲线的题目完整的做出来至少需要花一二十分钟的时间,甚至是一节课。高中阶段课程比较紧张,时间比较紧张,使得学生沉不下心来做这样耗时的题目。计算能力实在计算的过程中提高的。很多学生眼高手低,思路清楚了,就是这样算,然后就放弃了。其实计算里面有很多技巧,并不是机械的算。
二、舍弃太难、太偏的题目,得把握基础知识
首先以中低档的题训练为主,打好基础,再做难题就顺理成章,得心应手。难度大的题教学中一定要循序渐进,千万不能急于求成,可将题目分解,从学生的认知基础、认知能力出发,先做与之有关的变形题,在层层递进,漫漫过度到本题的解决。
说圆锥曲线难,主要的是压轴题目的后两问,第一问和前面的选择和填空也是基础的题目。要握基础知识,不可拔苗助长。
就是在高考的时候我们也要学会适当的放弃。他说为部分尖子生准备的,但并不是说我们一般的学生在平时就可以放弃了。
三、舍弃圆锥曲线就是纯计算的错误思想,得用数形结合思想解决圆锥曲线问题
学生学习过程中,要注意养成良好的画图习惯,不断增强对图形的思辨能力,充分发挥图形性质的功能来研究问题。平时可多做一些运用数形结合的思想来解决的问题,养成自觉运用数形结合的思想解决某些问题的习惯。数形结合有时可大大减少计算量,使问题简化,让我们发现里面本质的东西。
在高考中,圆锥曲线通常作为压轴题出现,同时在选择和填空题中也会考查,所占比例较大。在客观题中一般来说难度中等,较容易应对。后面的解答题其特点是难度较大,并且运算量大,较难得分。在教学中可以做到上面的“几舍几得”就可以了。
四、舍弃技巧性很强的题目,得把典型题目,常规做法练熟
其实,汇总一下圆锥曲线的解答题的做法,你会总结出一些规律,直线和圆锥曲线的位置关系是重点,常用的做法是联立,常求的结论是弦长、面积、参数的范围等等。
以上就是今天思源教育高考复读老师给大家分享的关于【高二数学圆锥曲线学习窍门】全部内容。
怎么学好圆锥曲线
圆锥曲线是高中数学的难点,也是重点。归根结底,圆锥曲线是解析几何的核心内容,也是高考数学中的必考内容。高中数学圆锥曲线怎么才能学好呢?下面我和你一起来看一看相关的内容。
怎么学好圆锥曲线
学好圆锥曲线方法一
舍弃太难、太偏的题目,得把握基础知识。首先以中低档的题训练为主,打好基础,再做难题就顺理成章,得心应手。难度大的题教学中一定要循序渐进,千万不能急于求成,可将题目分解,从学生的认知基础、认知能力出发,先做与之有关的变形题,在层层递进,漫漫过度到本题的解决。
说圆锥曲线难,主要的是压轴题目的后两问,第一问和前面的选择和填空也是基础的题目。要握基础知识,不可拔苗助长。
就是在高考的时候我们也要学会适当的放弃。他说为部分尖子生准备的,但并不是说我们一般的学生在平时就可以放弃了。
学好圆锥曲线方法二
舍得花时间,得提高计算能力。圆锥曲线的计算量非常大,一个圆锥曲线的题目完整的做出来至少需要花一二十分钟的时间,甚至是一节课。高中阶段课程比较紧张,时间比较紧张,使得学生沉不下心来做这样耗时的题目。计算能力实在计算的过程中提高的。很多学生眼高手低,思路清楚了,就是这样算,然后就放弃了。其实计算里面有很多技巧,并不是机械的算。
学好圆锥曲线方法三
舍弃技巧性很强的题目,得把典型题目,常规做法练熟。其实,汇总一下圆锥曲线的解答题的做法,你会总结出一些规律,直线和圆锥曲线的位置关系是重点,常用的做法是联立,常求的结论是弦长、面积、参数的范围等等。
学好圆锥曲线方法四
舍弃圆锥曲线就是纯计算的错误思想,得用数形结合思想解决圆锥曲线问题。学生学习过程中,要注意养成良好的画图习惯,不断增强对图形的思辨能力,充分发挥图形性质的功能来研究问题。平时可多做一些运用数形结合的思想来解决的问题,养成自觉运用数形结合的思想解决某些问题的习惯。数形结合有时可大大减少计算量,使问题简化,让我们发现里面本质的东西。
在高考中,圆锥曲线通常作为压轴题出现,同时在选择和填空题中也会考查,所占比例较大。在客观题中一般来说难度中等,较容易应对。后面的解答题其特点是难度较大,并且运算量大,较难得分。在教学中可以做到上面的?几舍几得?就可以了。
高中数学圆锥曲线秒杀技巧是什么?
高中数学圆锥曲线秒杀技巧是:
1、待定系数法
在解答求解待定系数的题型的时候,一定要灵活运用圆锥曲线的性质公式去求解。在选择填空题中也可以设置特殊值法进而快速求得这些待定系数的表达方式或者数值。
2、齐次方程法
在应用这些方程和技巧求解题目的时候特别要注意所解题目曲线的特征和特殊要求,利用曲线的性质在结合齐次方程便可快速的求解题目。
3、韦达定理法
可以通过通过韦达定理的逆定理,可以利用两数的和积关系构造一元二次方程。直线与曲线方程联立,交点坐标设而不求,用韦达定理写出转化完成。
4、点差法
运用点差法解决中点弦问题,利用韦达定理、设而不求方法和整体思想设计合理的计算程序,化简计算,准确求解,运算是解析几何学习中的难点,平时必须认真训练、仔细体会算理和初步掌握一些运算技巧。
5、距离转化法
圆锥曲线题型最主要的就是要能够理解图形和想象到平面图形的位置关系以及方程中系数对于图像的约束,距离转化法就是桥面运用了数形结合的原理快速解题的一种技巧。
数学圆锥曲线解题技巧
数学圆锥曲线解题技巧
(1)充分利用几何图形
解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。
(2)充分利用韦达定理及“设而不求”的策略
我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。
(3)充分利用曲线系方程
利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。
(4)充分利用椭圆的参数方程
椭圆的参数方程涉及到正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题.这也是我们常说的三角代换法。
(5)线段长的几种简便计算方法
①充分利用现成结果,减少运算过程。
②结合图形的特殊位置关系,减少运算
在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。
③利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。
圆锥曲线是数学中的难中之难,这已经成为几乎所有高三学生的心头痛。其实,解析几何题目自有路径可循,方法可依。只要经过认真的准备和正确的点拨,完全可以让高考数学的圆锥曲线难题变成让同学们都很有信心的中等题目。
题型稳定:
近几年来高考解析几何试题一直稳定在两个选填(选择或填空)题,一个解答题上,分值约为25分,占总分值的近20%。
整体平衡,重点突出:
解析几何部分19个知识点,一般会考查到其中的半数以上,其中对直线、圆、圆锥曲线知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既要注意全面,更要注意突出重点,对支撑数学科知识体系的主干知识,考查时保证较高的比例并保持必要深度。
能力立意,渗透数学思想:
一些常见的基本题型,如果借助于数形结合的思想,就能快速准确的得到答案,比死算要节省很多时间。
题型新颖,位置不定:
考查的选择题、填空题均属易、中等题,且解答题未必会有大难点。所以与相关知识的联系加深加大(如向量、函数、方程、不等式等),将会是今后解析几何的出题重心。
(1)以选择题题型考查本章的基本概念和性质,此类题一般难度不大,但每年必考,考查内容主要有以下几类:
①与本章概念(倾斜角、斜率、夹角、距离、平行与垂直、线性规划等)有关的问题;
②对称问题(包括关于点对称,关于直线对称)要熟记解法;
③与圆的位置有关的'问题,其常规方法是研究圆心到直线的距离。
(2)以解答题考查直线与圆锥曲线的位置关系,此类题综合性比较强,难度也较大。高考对本章的考查会保持相对稳定,即在题型、题量、难度、重点考查内容等方面不会有太大的变化。圆锥曲线内容的考查主要是:相比较而言,圆锥曲线内容是平面解析几何的核心内容,因而是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题和一道解答题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,直线与圆锥的位置关系等。
近十年高考试题看大致有以下三类:
(1)考查圆锥曲线的概念与性质;
(2)求曲线方程和求轨迹;
(3)关于直线与圆及圆锥曲线的位置关系的问题。
考查方式为:
选择题主要以椭圆、双曲线为考查对象,填空题以椭圆、双曲线、抛物线为考查对象,解答题以考查直线与圆锥曲线的位置关系为主,对于求曲线方程和求轨迹的题,高考一般不给出图形,以考查学生的想象能力、分析问题的能力,从而体现解析几何的基本思想和方法,圆一般不单独考查,总是与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现。解析几何的解答题一般为难题,所以,解析几何的基本方法——坐标法以及二次曲线性质的运用的命题趋向要引起我们的重视。
高考数学知识点
知识贵在分享。